Дроссель для защиты от синфазных помех, генерируемых импульсным источником питания
Синфазный дроссель — важнейший компонент входного фильтра любого импульсного источника питания. Дело в том, что в процессе работы импульсного преобразователя любой топологии, при переключении полевых транзисторов возникают синфазные помехи, которые распространяются в проводниках и по дорожкам печатных плат.
Эти помехи представляют собой вредные импульсные токи высокочастотного диапазона, которые текут одновременно и по плюсовому и по минусовому проводам, причем в одном и том же направлении. Если эти помехи в конце концов попадут в сеть питания переменного тока, то они способны не только понизить качество функционирования приборов включенных в сеть по соседству, но даже вывести их из строя, особенно сигнальные цепи цифровых блоков.
По данной причине, сегодня все бытовые приборы, принципиально могущие стать источниками синфазных помех, оснащены синфазными дросселями. К таким прибором относятся: принтеры, сканеры, мониторы, плееры, периферия ПК, сами ПК и т. д.
В каждом устройстве, где имеется импульсный блок питания, на входе после конденсатора фильтра обязательно установлен двухобмоточный синфазный дроссель на кольцевом или П-образном сердечнике. По бокам от дросселя установлены конденсаторы для подавления дифференциальных помех (дифференциальные помехи — это отдельная тема), а также высоковольтные Y-конденсаторы.
Две обмотки синфазного дросселя намотаны на общий сердечник из материала с высокой магнитной проницаемостью, такого как феррит. И если по проводам обмоток потекут токи синфазной помехи — от источника в сторону сети, то магнитные поля этих токов сложатся, и индуктивность дросселя проявит себя в полной мере подавлением этих токов: львиная доля их энергии уйдет на создание магнитного поля, — таким образом амплитуда помехи существенно уменьшится, и до сети переменного тока синфазная помеха если и дойдет, то сильно ослабленной, уже не способной как-то вредоносно себя проявить.
С другой стороны, когда переменный ток из сети подается к потребителю, встречая на своем пути синфазный дроссель, он не испытывает абсолютно никакого сопротивления, ибо омическое сопротивление проводов пренебрежимо мало, а магнитные поля токов в двух проводниках направлены противоположно друг другу и равны по величине между собой.
Катушки абсолютно идентичны и намотаны идеально симметрично. Часто эти обмотки выполнены намоткой в два провода, что минимизирует индуктивность рассеивания между ними. Получается, что индуктивность синфазного дросселя для обычного импульсного тока, который в двух проводах имеет противоположное направление и одну и ту же величину, будет нулевой. Таким образом, синфазный дроссель мешает исключительно синфазным помехам, источником которых является блок питания, а не сеть переменного тока.
А если бы синфазного дросселя не было, то синфазная помеха беспрепятственно проникла бы и в сеть переменного тока, не помешали бы и конденсаторы между проводами на пути ее распространения.
Что касается эффективных конденсаторов на пути синфазной помехи, то это — керамические высоковольтные конденсаторы (Y-конденсаторы) емкостью в единицы нанофарад, устанавливаемые между каждым проводом питания и шиной заземления, чтобы часть энергии синфазных помех уходила бы в землю. Для рабочего тока данные конденсаторы представляют очень большое сопротивление, в связи с чем на КПД устройства не влияют.
Выпускаемые промышленностью выводные и SMD синфазные дроссели для плат импульсных источников питания отличаются рядом преимуществ. Они довольно компактны, не занимают много места на печатной плате, их активное сопротивление не превышает единиц мОм, а максимально допустимый ток питания через дроссель зависит по сути только от толщины провода и мощности устройства. Номинальный ток варьируется от 1мА до 10 А. Типовые величины индуктивностей — от 10 мкГн до 100 мГн.
- Бутстрепный конденсатор в схеме управления полумостом
- Триггер Шмитта — общее представление
- Простая RC-цепь для задержки прямоугольных импульсов
Надеюсь, что эта статья была для вас полезной. Смотрите также другие статьи в категории Электрическая энергия в быту и на производстве » Практическая электроника
Подписывайтесь на канал в Telegram про электронику для профессионалов и любителей: Практическая электроника на каждый день
Поделитесь этой статьей с друзьями:
фильтр на синфазном дросселе
Вы можете написать сейчас и зарегистрироваться позже. Если у вас есть аккаунт, авторизуйтесь, чтобы опубликовать от имени своего аккаунта.
Примечание: Ваш пост будет проверен модератором, прежде чем станет видимым.
Поделиться
Последние посетители 0 пользователей онлайн
- Ни одного зарегистрированного пользователя не просматривает данную страницу
Объявления
Сообщения
До 1Вт для меня — ХХ, считай.
Да, тут надо МК. Проблем с отключаемой кнопкой вроде быть не должно. Только разъёмное соединение надо продумать. Или готовое что-то приспособить, типа от неисправных беспроводных наушников
Вернул Canon , существенно лучше, по моему. Шубы практически нет, но есть разбежка по фазе. При этом я ещё коррекцию не уменьшал, то есть по ВЧ она для Canon даже избыточна. Наблюдал работу ЛПМ с сендвичем, когда ставил свой Canon. Дело в том, что когда подушечка прижимается к головке без движения ленты, кажется что она стоит по центру головок, но как только лента начинает протягиваться роликом, подушечка тянется лентой в сторону ролика. Это приводит к тому, что она уже становится не по центру, а смещается в сторону воспроизводящей головки. Если подушечка широкая, то ее ширины хватает и на записывающую секцию, а если узкая, то уже нет. Отсюда и падение уровня записи! Этого не видно зеркальной кассетой, так как там нет подушечки. Я для этого разбирал кассету, снимал верхнюю крышку, тогда все видно.
А порт FT232RL почему не указали, первый порт обычно порт материнки.
Зато мосфет, подключенный к тл431 — ключ. При условии, конечно, что его пороговое напряжение превышает опорное напряжение тлки.
Там надо 3-4 разряда,или вы думаете что чем больше разрядов тем точнее температуру будет показывать? У меня есть дисплей ИЖЦ и я его применил,его аналоги применяются в дешевых мультиметрах,никакой драйвер там не нужен Достоинства-сломанный мультиметр с подобным дисплеем есть почти у каждого и лежит годами,цифры четкие,хорошо видны Я ничего не имею против 8148,нравится-применяйте,я ж не против А прошивку написать для такого дисплея проще простого,если умеете Повторяю специально для @_vintik
Синфазные дроссели TDK-EPCOS как решение проблемы… синфазных дросселей
Синфазные дроссели — универсальное классическое средство, позволяющее решить задачи подавления электромагнитных помех (ЭМП) и, соответственно, выполнить требования по электромагнитной совместимости (ЭМС). Эти устройства настолько привычны, что воспринимаются как нечто, не создающее проблем. Но всегда ли синфазный дроссель синфазный? Вот в чем вопрос, но на него есть ответ. И дело здесь в правильном выборе не только дросселя, но и его изготовителя и поставщика.
Когда разработчику радиоэлектронной аппаратуры (РЭА) срочно приходится решать проблемы электромагнитной совместимости и подавления синфазных, а попутно и дифференциальных помех, он буквально, как утопающий за соломинку, хватается за синфазный дроссель. И это правильно. Казалось бы, тут все просто и понятно, про синфазные дроссели и их применение написано много, да и выбор их богатый, в конце концов, можно и самому его сделать, намотав, например, на ферритовое кольцо две проволочки. Однако проблемы, как и дьявол, кроются в деталях.
В общем представлении синфазный дроссель — это связанная индуктивность, в нем на одном сердечнике намотаны как минимум две катушки (бывает, и три, и четыре). Кстати, для получения синфазного дросселя очень важна стратегия намотки (рис. 1), и это разработчикам РЭА хорошо известно. Но в нашем случае, чтобы понять, где тут «дьявол», воспользуемся принципом «повторение — мать учения». Для ясности и простоты остановимся на дросселе с двумя обмотками.
Рис. 1. Идеальный синфазный дроссель:
а) для дифференциальных токов;
б) синфазных токов;
в) его условное обозначение в схемах
Компактное электрическое и электронное оборудование в основном генерирует синфазные помехи. Для того чтобы оно соответствовало требованиям безопасности (не выходя за пределы тока утечки), необходимо использовать дроссели с высоким значением асимметричной эффективной индуктивности. Для этой цели оптимальны дроссели с компенсацией тока в топологии с закрытым сердечником. Проблема насыщения сердечника за счет полезного тока в этих конструкциях решается выбором материала сердечника, но самое главное — намоткой двух катушек с равным числом витков на сердечнике. Катушки связаны таким образом, что магнитный поток, индуцированный верхней катушкой, компенсируется нижней катушкой.
Для подобного идеального дросселя магнитный поток в сердечнике обусловлен тем, что токи дифференциального режима iDM (рис. 1а) компенсируют друг друга, что приводит к нулевому сопротивлению (точнее, импедансу) дросселя. Но магнитные потоки Ф1 и Ф2, вызванные синфазными токами iCM (рис. 1б), суммируются, что значительно увеличивает полное сопротивление (импеданс). Для получения такого прекрасного со всех точек зрения эффекта важно правильно выполнить обмотки, поэтому в условном обозначении дросселя данного типа (рис. 1в) используется две точки, чтобы указать, как должны быть выполнены обмотки.
Подводя итог, отметим, что синфазный дроссель выглядит как простой проводник для дифференциальных сигналов и как индуктивность для синфазных сигналов. Одно из преимуществ этих видов дросселей заключается в том, что они не будут насыщаться токами дифференциального режима. Для этих связанных индуктивностей коэффициент связи k может быть рассчитан по формуле (1):
где M — коэффициент взаимной индуктивности, а L1, L2 — индуктивности для обеих обмоток.
Значения индуктивностей для синфазного и дифференциального режимов могут быть получены по формулам (2):
Учитывая, что индуктивности L1 и L2 равны L и для 100%-ной идеальной связи k = 1, взаимная индуктивность M из формулы (1) получается равной индуктивности L (M = L), а индуктивности дросселя для синфазного и дифференциального режимов, как следует из формул (2), соответственно, равны LDM = 0 и LCM = L.
Таким образом, подтверждается, что мы не обнаружим наличия импеданса для сигналов дифференциального режима, но будем иметь некоторое, определяемое индуктивностью LCM значение импеданса для сигналов синфазного режима. Однако спустимся с небес на землю: здесь часто возникают другие трудности.
На практике взаимная компенсация магнитного потока в дифференциальном режиме не идеальна, этот факт разработчикам РЭА хорошо известен и широко используется. В дифференциальном режиме импеданс не равен нулю, он определяется такой характеристикой, как индуктивность рассеяния, и полезен для фильтрации сигналов дифференциального режима. Однако нельзя забывать и том, что в приложениях с высоким током необходимо убедиться в отсутствии эффекта насыщения сердечника дросселя.
Здесь полезно обратиться к наглядному и поучительному примеру, приведенному в [1]. Автор этой статьи столкнулся с крайне неприятной ситуацией, когда устройство, проверенное им на прототипе в лаборатории, провалилось на сертификационных испытаниях. Причем все элементы и компоновка были те же, что и в прототипе. Чтобы проанализировать и понять ситуацию, автор измерил реакцию синфазных дросселей прототипа (условно названного CHKA) и заявленного на сертификацию изделия (условно названного CHKB) с помощью векторного анализатора цепей Bode 100. Упрощенное измерение синфазного дросселя было выполнено, как показано на рис. 2.
Рис. 2. Упрощенное измерение импедансов для синфазного дросселя:
а) синфазного режима;
б) дифференциального режима
Результаты измерения дросселя, который удовлетворительно работал в приложении (CHKA), представлены на рис. 3.
Рис. 3. Характеристики дросселя CHKA:
а) синфазного режима;
б) дифференциального режим
На рис. 3 можно увидеть, насколько велико различие импедансов синфазного режима по сравнению с дифференциальным. На втором дросселе (CHKB), снятом с изделия, на котором провалились испытания в сертификационной лаборатории, автор смог заметить очень тонкое отличие — на одной из катушек дросселя отсутствовал один виток (рис. 4).
Рис. 4. Дроссели, используемые в качестве примера в [1]
У дросселя CHKA было 14 витков для L1 и L2, а у дросселя CHKB — 14 витков для L1 и 13 витков для L2. Это оказалось весьма существенной разницей. Если одна из катушек отличается от другой, то индуктивность для синфазного сигнала будет уменьшена (соответственно, будет плохая фильтрация синфазной ЭМП), а дифференциальная индуктивность увеличена. Когда речь идет о линиях передачи, это может привести к проблемам с целостностью сигналов (Signal Integrity — наличие достаточных для безошибочной передачи качественных характеристик электрического сигнала), или если речь идет о цепях питания, то в приложениях с большим током сердечник, вероятно, может быть насыщен даже номинальным рабочим током.
Данный тип дросселей наматывается вручную, так что человеческие ошибки и/или некачественные проверки конечного продукта могут создать проблему, которую трудно будет сразу обнаружить и которая способна проявиться совершенно неожиданно. Сравнение обоих дросселей приведено на рис. 5.
Рис. 5. Сравнение характеристик дросселей CHKA и CHKB:
а) синфазного режима;
б) дифференциального режима
Из приведенного примера ясно, насколько важна идеальная симметрия для двух катушек в дросселе. Даже в случае, когда в одной из катушек отсутствует лишь один виток, импеданс синфазного дросселя для синфазного режима (рис. 5а) резко уменьшается, как, например, от точки A к точке B на той же самой частоте. Если говорить в целом, то несимметричность может быть вызвана не только пропуском полного витка, как в приведенном примере, но и просто нарушениями геометрии намотки. К сожалению, нередко этого нарушения шага намотки (не забываем, что в формулу для расчета индуктивности входит величина, обратная длине обмотки, следовательно, при равных условиях неплотно намотанная катушка будет иметь меньшую индуктивность) или пропуска части витка при терминации просто не замечают. Вот почему для ответственных применений, особенно это касается высокочастотных приложений, не рекомендуется их самостоятельное, часто полукустарное, изготовление.
Результатом нарушения исполнения синфазного дросселя будет низкая эффективность фильтрации синфазных сигналов ЭМП в области высоких частот — для чего, собственно, эти дроссели и используются. Таким же образом индуктивность в дифференциальном режиме увеличивается от A до B (рис. 5б) с типичным эффектом насыщения сердечника или нарушениями целостности сигнала из-за снижения частоты среза фильтра, образованного индуктивностью рассеяния и в зависимости от включения дросселя входной или выходной емкостью [5].
Отсюда следует вывод: чтобы вы могли спать спокойно, пока ваше изделие проходит квалификацию в сертификационной лаборатории (впрочем, по опыту автора настоящей статьи, спокойно спать сложно [2], но по крайней мере вас не будут мучить кошмары: сертификация — дело небыстрое и дорогое), — будьте осторожны с недорогими и, как правило, не гарантирующими должного качества компонентами. Это касается не только идеальности намотки, но и материалов, из которых они изготовлены, поскольку последние влияют на точность соблюдения индуктивности и ток насыщения.
В качестве выхода из ситуации можно предложить использовать для критических приложений синфазные дроссели от поставщиков, имеющих надежную репутацию на рынке. Одним из таких поставщиков является TDK Corporation — японская компания, занимающаяся производством электронных компонентов и носителей информации. Название произошло из исходного японского наименования компании Tokyo Denkikagaku Kōgyō. Компания, основанная Кензо Сайто (Kenzo Saito) еще в 1935 году, первой в мире поняла перспективу и начала специализироваться на изготовлении ферритов, незадолго до этого открытых докторами Йогоро Като (Dr. Yogoro Kato) и Такеши Такеи (Dr. Takeshi Takei) из Токийского технологического института. С тех пор TDK остается одним из ведущих производителей, успешно работающих в этой области. Позиции компании по выпуску элементов из ферритовых материалов значительно усилились в 2008 году после приобретения 90% акций еще одной известной компании EPCOS AG (Electronic Parts and Components) — европейского лидера по производству пассивных электронных компонентов. Объединение таких брендов и их технологий позволило вывести на рынок изделия, в качестве, надежности и технических характеристиках которых можно не сомневаться. В том числе компания выпускает синфазные дроссели, специально разработанные для подавления ЭМП и решения вопросов ЭМС [3, 4].
Как уже было сказано, синфазные дроссели помогают решить две важные проблемы по ЭМС. Первая — очистить цепи питания от ЭМП, то есть уменьшить их излучение цепями питания и линиями их подключения, а вторая — защитить цепи или линии передачи сигнала от воздействия ЭМП. Эти проблемы очень различаются, соответственно, для их решения требуются разные типы синфазных дросселей [5, 6]. Компания TDK и ее структурное подразделение EPCOS предлагают универсальные решения для обеих проблем. В портфелях предложений компании имеются синфазные дроссели на любой вкус и цвет — от традиционных двух- и трехобмоточных до четырехобмоточных проволочных, рассчитанных на средние и большие токи, а также миниатюрные многослойные и тонкопленочные, предназначенные для сигнальных цепей, и сборки из нескольких дросселей, выполненные в одном корпусе [3].
Что касается продукции головной компании TDK, выбор подходящего синфазного дросселя проще всего осуществить по путеводителю [3], в котором приведены наглядные примеры применения тех или иных серий, и по таблицам с необходимыми гиперссылками на сайт компании:
- Для выбора синфазных дросселей коммерческого назначения для сигнальных линий [7].
- Для выбора синфазных дросселей автомобильного назначения для сигнальных линий [8].
- Для выбора синфазных дросселей автомобильного назначения для линий питания [9].
Что касается продукции EPCOS, читатель найдет дроссели для линий питания по ссылке [10], а дроссели для линий данных и сигнальных линий — по ссылке [11]. Внешний вид некоторых синфазных дросселей компании EPCOS для линий питания показан на рис. 6. Поскольку ассортимент продукции компании TDK все время обновляется, для оптимального выбора компонентов необходимо обратиться к сайту европейского представительства TDK Electronics — TDK Europe [12], где доступна вся необходимая информация, или к ее авторизованным региональным представителям. Кроме того, компания имеет службу технической поддержки, которая оказывает клиентам всестороннюю помощь.
Рис. 6. Примеры конструктивного исполнения синфазных дросселей компании EPCOS для линий питания:
а) серия B82724J8 N;
б) серия B82732R;
в) серия B82732W;
г) серия B82724B;
д) серия B82747S6313;
е) серия B82725S2*
- Mediano Be Careful with Low Cost/Quality Common Mode Chokes.
- Рентюк В. Электромагнитная совместимость: проблема, от решения которой не уйти // Компоненты и технологии. № 7’2017
- Guidebook for TDK Inductors & Noise Suppression Components.
- Рентюк В. Многослойные ферритовые элементы компании TDK EPCOS — эффективное и удобное решение проблемы ЭМС. В сб.: Электромагнитная совместимость в электронике. 2018.
- Робертс С. Решения проблемы пульсаций и помех DC/DC-преобразователей: входная и выходная фильтрация // Компоненты и технологии. 2015. № 8.
- Рентюк В. Синфазные дроссели для высокоскоростных интерфейсов: рекомендации по выбору // Компоненты и технологии. № 9’2017.
- Selection Guide for Signal Line Common Mode Filters/Chokes (Commercial Grade).
- Selection Guide for Signal Line Common Mode Filters/Chokes (Automotive Grade).
- Common Mode Filters/Chokes for Power Supply Lines Selection Guide (Automotive Grade).
- Power Line Chokes (EPCOS).
- EPCOS Data and Signal Line Chokes.
- tdk-electronics.tdk.com/en
Дроссель и его параметры
Дросселем, в общем случае, называют катушку индуктивности, чаще всего с сердечником, которая служит для устранения или уменьшения переменного (импульсного) тока, разделения или ограничения сигналов различной частоты. Исходя из этого, дроссели условно можно разделить на следующие типы:
— сглаживающие дроссели, предназначены для ослабления переменной составляющей постоянного тока или напряжения различной частоты, то есть сглаживания пульсаций, на выходе и входе силовых преобразователей или выпрямителей;
Для сборки радиоэлектронного устройства можно преобрески DIY KIT набор по ссылке.
— дроссели переменного тока, предназначены для ограничения электрического тока, при резких изменениях нагрузки, например, при пуске электродвигателей или источников питания;
— дроссели насыщения, или управляемые дроссели, предназначенные для регулирования индуктивного сопротивления за счёт изменения тока подмагничивания.
Дроссели, как и любая другая катушка индуктивности, может быть без сердечника, с замкнутым сердечником, с сердечником, имеющим малый зазор и с сердечником, имеющим большой зазор или разомкнутым сердечником. Поэтому в независимости от назначения дросселя его принцип действия основан на электромагнитных свойствах катушки индуктивности и сердечника, на котором она выполнена.
Принцип работы идеального дросселя
Дроссель, как и любой другой элемент электрической цепи, содержит ряд параметров, которые определяются его физическими и конструктивными характеристиками. В зависимости от назначения дросселя одни его характеристики стараются улучшить, а значение других уменьшить. Но, несмотря на характер работы дросселя, его основным параметром является индуктивность, поэтому рассмотрим дроссель, содержащий только один параметр – индуктивность, такой дроссель называется идеальным и он характеризуется следующими допущениями:
— обмотка дросселя не имеет активного сопротивления;
— отсутствует межвитковая ёмкость проводников дросселя;
— магнитное поле в сердечнике однородно, то есть значение индукции и напряженности в различных его точках имеет одинаковое значение.
С учётом таких допущений, представим сердечник, на который намотана катушка.
Идеальный дроссель.
Подадим на катушку переменное напряжение U, в результате по катушке потечёт переменный ток I, создающий в сердечнике переменный магнитный поток Φ. Тогда в соответствии с законом самоиндукции в витках обмотки возникнет ЭДС самоиндукции Е. Так как у нас отсутствует активное сопротивление обмотки идеального дросселя, то ЭДС самоиндукции уравновесит напряжение, вызвавшее электрический ток
В тоже время индуктивность, как коэффициент самоиндукции можно определить по следующему выражению
где ω – количество витков катушки,
S – площадь поперечного сечения сердечника,
B – магнитная индукция,
I – величина электрического тока.
Тогда выражение для ЭДС самоиндукции будет иметь вид
Данное выражение показывает, что ЭДС самоиндукции зависит от конструкции и размеров дросселя, а также от скорости изменения магнитного поля (dB/dt).
Так как в идеальном дросселе отсутствуют активные нагрузки, а только индуктивная составляющая, то активная мощность будет равняться нулю. В индуктивном элементе расходуется только реактивная мощность на создание магнитного поля.
Принцип работы реального дросселя
В реальном дросселе, в отличие от идеального, кроме индуктивности имеется ещё рад параметров, вносящих активную составляющею мощности. Рассмотрим реальный дроссель
Магнитные силовые линии реальной катушки.
Поступающий в дроссель переменный ток возбуждает вокруг катушки переменное магнитное поле, определяемое магнитным потоком Φ. В идеальном дросселе он полностью замыкается через сердечник Φ0, но в реальности к нему добавляется магнитный поток рассеяния, охватывающий как витки по отдельности, так и группы витков провода. Он зависит от расположения витков, сечения провода, плотности укладки витков провода и так далее. Поток рассеивания достаточно трудно выразить количественно, поэтому для его характеристики вводят понятие потокосцепление рассеяния ΨS, который можно выразить через индуктивность рассеяния LS обмоток дросселя
В соответствии с законом электромагнитной индукции, поток рассеяния возбуждает ЭДС рассеяния
Поток рассеяния в дросселе негативно влияет на работу устройств, так как вызывает паразитные шумы, наводки и потери мощности в целом.
Кроме потерь реактивной мощности потоками рассеяния, в реальном дросселе происходят потери активной мощности в сопротивлении витков обмотки и потерях в сердечнике, обусловленных его ферромагнитными свойствами.
Эквивалентная схема дросселя
Для анализа работы реального дросселя создадим схему замещения, которая учитывает его основные и паразитные параметры.
Эквивалентная схема дросселя с учётом паразитных параметров.
Таким образом, на характеристики дросселя кроме собственной индуктивности дросселя L, являющейся основным параметром, так сказать полезным, присутствует паразитная индуктивность LS, обусловленная потоком рассеяния, активное сопротивление R обмоточного провода, межвитковая ёмкость С обмотки дросселя, а также проводимости gμ. Проводимость gμ характеризует мощность, которая затрачивается на перемагничивание сердечника, из-за наличие петли гистерезиса.
Уравнение соответствующее эквивалентной схеме будет иметь вид
Как видно на схеме ток в дросселе состоит из двух составляющих: Iμ – ток отвечающий за создание основного магнитного потока Φ0 и Iа – ток, учитывающий потери мощности при перемагничивании и нагрев сердечника
где РС – мощность потерь в сердечнике.
Основной параметр дросселя – индуктивность L определяется по выражениям для индуктивностей различных типов, например, индуктивность без сердечника, индуктивности на замкнутых сердечниках, индуктивности на сердечниках с зазором и индуктивности на разомкнутых сердечниках.
Остальные параметры определить несколько сложнее. Рассмотрим определение данных параметров.
Как рассчитать межвитковую ёмкость обмотки дросселя?
В дросселе, между витками, слоями и металлическими предметами вокруг дросселя существует некоторая разность потенциалов, создающих электрическое поле. Для оценки влияния данного поля вводят понятие межвитковой ёмкости или собственной ёмкости дросселя, величина которой зависит от размеров и конструктивных особенностей дросселя.
Межвитковая ёмкость C обмотки, являясь паразитным параметром, совместно с индуктивностью рассеивания и собственной индуктивностью дросселя образуют различные виды фильтров и колебательных контуров. Хотя данный параметр имеет небольшое значение, тем не менее, в определённых условиях его приходится учитывать, однако точный расчёт затруднён в связи с большим влиянием различных конструктивных параметров, в первую очередь, взаимного расположения витков провода между собой. Так наибольшей межвитковой ёмкостью обладают катушки намотанные «внавал», а наименьшей – катушки с намоткой типа «Универсаль» или секционные катушки.
Межвитковую емкость Собщ дросселя можно представить в виде суммы емкостей между внутренним слоем обмотки и магнитопроводом С1 и межслоевой емкости внутри обмотки С2
Ёмкость между внутренним слоем обмотки и магнитопроводом можно определить из эмпирической формулы
где εа – абсолютная диэлектрическая проницаемость среды вокруг проводника, εа = ε0εr,
εr – относительная диэлектрическая проницаемость,
ε0 – электрическая постоянная, ε0 = 8,85 * 10 -12 Ф/м,
r – радиус поперечного сечения провода,
а – расстояние между магнитопроводом и осью провода,
n – число витков в слое,
р1 – периметр витка внутреннего слоя обмотки.
Относительная диэлектрическая проницаемость берётся для материала каркаса дросселя, если бескаркасное исполнение, то соответственно проницаемость воздуха либо изоляции проводника, в зависимости от необходимой точности.
Емкость между слоя обмотки так же вычисляется по эмпирической формуле
где рср – периметр среднего витка обмотки,
b – расстояние между осями витков в соседних слоях,
В данном случае диэлектрическая проницаемость берётся для материала межслоевой изоляции.
Во всех случаях необходимо добиваться уменьшения межвитковой ёмкости обмотки. Для этого применяют различные виды намоток и материалов для каркасов и межслоевой изоляции с малым значением диэлектрической проницаемости.
Как рассчитать индуктивность рассеяния дросселя?
Индуктивность рассеяния LS, также как и межвитковая ёмкость, является паразитным параметром и негативно влияет на индуктивные элементы, в частности на дроссель. Индуктивность рассеяния вместе с межвитковой емкостью образуют фильтр нижних частот, вызывающий уменьшение амплитуды переменного напряжения и тока на высоких частотах. Данное обстоятельство приводит к тому, что увеличиваются активные потери мощности и происходит нагрев дросселя.
Индуктивность рассеяния зависит от типа конструкции дросселя и его размеров и может быть определена по следующему выражению
где μ0 – относительная магнитная проницаемость, μ0 = 4π*10 -8 ,
рср – периметр среднего витка обмотки,
w – количество витков провода в дросселе,
l – длина намотки,
h – толщина намотки.
В большинстве случаев необходимо добиваться уменьшения индуктивности рассеяния, для чего стараются как можно плотнее уложить провод в намотке, уменьшения количества слоёв обмотки дросселя и увеличения длины намотки. В идеале стремятся использовать однослойные обмотки, если это возможно.
Стоит отметить, что приведённые выражения для определения паразитных параметров межвитковой ёмкости С и индуктивности рассеяния LS являются ориентировочными и могут в различных случаях давать погрешность порядка 20 %. Поэтому при необходимости знать точное значение их определяют экспериментальным путём различными способами.
На сегодня всё, а в следующей статье я расскажу о потерях мощности и нагреве дросселей при работе.
Теория это хорошо, но необходимо отрабатывать это всё практически ПОПРОБОВАТЬ МОЖНО ЗДЕСЬ