Функция y=x² и её график. Парабола
Составим таблицу для расчёта значений функции $y = x^2$:
Отметим полученные точки на координатной плоскости и соединим их кривой:
Полученный график называют параболой. Точка (0;0) — это вершина параболы. Вершина делит график на левую и правую части, которые называют ветвями параболы.
Свойства параболы y=x²
1. Область определения $x \in (- \infty;+ \infty)$ — все действительные числа.
2. Область значений $y \in [0;+ \infty)$ — все неотрицательные действительные числа.
3. Функция убывает при $x \lt 0$, функция возрастает при $x \gt 0$.
4. Наименьшее значение функции y = 0 — в вершине параболы при x = 0. Вершина параболы совпадает с началом координат.
5. Все точки на ветвях параболы лежат выше оси абсцисс, для них $y \gt 0$.
6. График параболы симметричен относительно оси ординат, противоположным значениям аргумента соответствует одно и то же значение функции:
$$ (-x)^2 = x^2 \Rightarrow y(-x) = y(x) $$
В таких случаях говорят, что функция чётная.
Если использовать запись для множеств и их элементов (см.§8 данного справочника), то область определения можно записать как $\$, а область значений $\$.
Примеры
Пример 1. Решите графически уравнение:
Квадратичная функция. Парабола
Прежде чем перейти к разбору квадратичной функции рекомендуем вспомнить, что называют функцией в математике.
Если вы прочно закрепите общие знания о функции (способы задания, понятие графика) дальнейшее изучение других видов функций будет даваться значительно легче.
Что называют квадратичной функцией
Запомните!
Квадратичная функция — это функция вида
y = ax 2 + bx + c,
где a , b и с — заданные числа.
Другими словами можно сказать, что если в функции старшая (то есть самая большая) степень, в которой стоит « x » — это « 2 », то перед нами квадратичная функция.
Рассмотрим примеры квадратичных функций и определим, чему в них равны коэффициенты « a », « b » и « с ».
Как построить график квадратичной функции
Запомните!
График квадратичной функции называют параболой.
Парабола выглядит следующим образом.
Также парабола может быть перевернутой.
Существует четкий алгоритм действий при построении графика квадратичной функции. Рекомендуем при построении параболы всегда следовать этому порядку действий, тогда вы сможете избежать ошибок при построении.
Чтобы было проще понять этот алгоритм, сразу разберем его на примере.
Построим график квадратичной функции « y = x 2 −7x + 10 ».
- Направление ветвей параболы
Запомните! Если « a > 0 », то ветви направлены вверх. Если « a », то ветви направлены вниз.
В нашей функции « a = 1 », это означает, что ветви параболы направлены вверх.
Координаты вершины параболы
Запомните! Чтобы найти « x0 » (координата вершины по оси « Ox ») нужно использовать формулу:
Найдем « x0 » для нашей функции « y = x 2 −7x + 10 ».
x0 =
− (−7) |
2 · 1 |
=
7 |
2 |
= 3,5
Теперь нам нужно найти « y0 » (координату вершины по оси « Oy »). Для этого нужно подставить найденное значение « x0 » в исходную функцию. Вспомнить, как найти значение функции можно в уроке «Как решать задачи на функцию» в подразделе «Как получить значение функции».
y0(3,5) = (3,5) 2 − 7 ·3,5 + 10 = 12,25 − 24,5 + 10 = −12,25 + 10 = −2,25
Выпишем полученные координаты вершины параболы. (·) A (3,5; −2,25) — вершина параболы. Отметим вершину параболы на системе координат. Проведем через отмеченную точку ось симметрии, так как парабола — это симметричный график относительно оси « Oy ».
Запомните! Нули функции — это точки пересечения графика функции с осью « Ox » (осью абсцисс).
Наглядно нули функции на графике выглядят так: Свое название нули функции получили из-за того, что у этих точек координата по оси « Oy » равна нулю. Теперь давайте разберемся, как до построения графика функции рассчитать координаты точек нулей функции.
Запомните! Чтобы найти координаты точек нулей функции, нужно в исходную функцию подставить вместо « y = 0 ».
Подставим в заданную функцию « y = x 2 −7x + 10 » вместо « y = 0 » и решим полученное квадратное уравнение относительно « x » .
- (·) B (5; 0)
- (·) C (2; 0)
Отметим полученные точки («нули функции») на системе координат.
- y(1) = 1 2 − 7 · 1 + 10 = 1 − 7 + 10 = 4
- y(3) = 3 2 − 7 · 3 + 10 = 9 − 21 + 10 = −2
- y(4) = 4 2 − 7 · 4 + 10 = 16 − 28 + 10 = −2
- y(6) = 6 2 − 7 · 6 + 10 = 36 − 42 + 10 = 4
Запишем полученные результаты в таблицу.
x | 1 | 3 | 4 | 6 |
y | 4 | −2 | −2 | 4 |
Отметим полученные точки графика на системе координат (зеленые точки).
Теперь мы готовы построить график. На забудьте после построения подписать график функции.
Краткий пример построения параболы
Рассмотрим другой пример построения графика квадратичной функции. Только теперь запишем алгоритм построения коротко без подробностей.
Пусть требуется построить график функции « y = −3x 2 − 6x − 4 ».
-
Направление ветвей параболы « a = −3 » — ветви параболы направлены вниз.
x0 =
−b |
2a |
x0 =
−(−6) |
2 · (−3) |
=
6 |
−6 |
= −1
y0(−1) = (−3) · (−1) 2 − 6 · (−1) − 4 = −3 · 1 + 6 − 4 = −1
(·) A (−1; −1) — вершина параболы.
Нули функции
Точки пересечения с осью « Ox » ( y = 0 ).
−3x 2 − 6x − 4 = 0 |·(−1)
x1;2 =
−6 ± √ 6 2 − 4 · 3 · 4 |
2 · 1 |
x1;2 =
−6 ± √ 36 − 48 |
2 |
x1;2 =
−6 ± √ −12 |
2 |
Ответ: нет действительных корней.
- y(−3) = −3 · (−3) 2 − 6 · (−3) − 4 = −3 · 9 + 18 − 4 = −27 + 14 = −13
- y(−2) = −3 · (−2) 2 − 6 · (−2) − 4 = −3 · 4 + 12 − 4 = −12 + 12 − 4 = −4
- y(0) = −3 · 0 2 − 6 · 0 − 4 = −4
- y(1) = −3 · 1 2 − 6 · 1 − 4 = −3 −6 − 4 = −13
Отметим вспомогательные точки. Отмечаем на системе координат только те точки, которые не выходят за масштаб нашей системы координат, то есть точки « (−2; −4) » и « (0; −4) ». Построим и подпишем график функции.
Ваши комментарии
Важно!
Чтобы оставить комментарий, вам нужно войти на наш сайт при помощи «ВКонтакте».
Парабола: что это, квадратичная функция, построение параболы
Парабола с греческого относится к конкретной плоской Кривой. Слово parabolh означает «сравнение», буквально «бросание рядом».
Вершина параболы: формула квадратичной функции
Мы знаем, что любое линейное уравнение с двумя переменными может быть записано в виде функции \(y=kx+b\) , и что его график является линией. В этой статье мы увидим, что любое квадратичное уравнение вида \(y = ax^2 + bx + c \) имеет изогнутый график, называемый параболой.
Две точки определяют линию. Однако, поскольку парабола изогнута, мы должны найти более двух точек. Найдем по крайней мере пять точек для создания приемлемого графика. Потом построим точки и нарисуем график параболы \(y_1=x^2+2x+3\) по точкам.
Учитывая квадратичное уравнение вида \(y = ax^2 + bx + c \) , \(x\) является независимой переменной, а \(y\) -зависимой переменной. Выберем некоторые значения для \(x\) , а затем определим соответствующие значения \(y\) .
Вывод: графиком квадратичного уравнения \(ax^2 + bx + c = 0\) , где \(a ≠ 0\) является парабола.
- Если \(a> 0\) , то его вершина указывает вниз.
- Если \(a < 0\) , то его вершина указывает вверх:
- Если \(a = 0 \) , то граф не парабола, а прямая линия.
Вершина параболы находится в точке \(x=\frac< - b><2a>.\)2a>
На рисунке выше изображены графики парабол \(y_1=x^2+2x+3\) и \(y_2=-x^2+6x-7\) . Рассчитаем вершины параболы (формула): \(x_1=\frac<-2>=-1\) и \(x_2=\frac=3.\) Свободный член \(3\) и \(-7\) означает пересечение с осью \(y\) , то есть сдвиг графика по оси \(OY.\)-2>
Коэффициент \(b\) означает симметричность относительно оси \(OY.\) Если \(b=0\) , то вершина лежит оси \(OY.\)
Как определить, куда направлены ветви парабол?
Есть простое правило, по которому можно без построения графика увидеть, когда ветви параболы направлены вниз а когда вверх Для определения направления ветвей параболы, вы должны проанализировать коэффициент перед квадратичным членом уравнения параболы. Уравнение параболы в общем виде имеет вид:
- Если коэффициент «a» (коэффициент перед x в квадрате) положителен (a > 0), то ветви параболы направлены вверх. Такая парабола имеет минимум, который находится внизу, а ее значение увеличивается по мере удаления от вершины вниз и вверх.
- Если коэффициент «a» отрицателен (a < 0), то ветви параболы направлены вниз. В этом случае парабола имеет максимум в вершине, а ее значение уменьшается по мере удаления от вершины вниз и вверх.
При определении направления ветвей параболы, также полезно посмотреть на знак коэффициента «a», так как он определяет выпуклость или вогнутость параболы.
Применение параболы
Радиоволны часто должна быть сконцентрирована в одной точке например, радиотелескопы, платные телевизионные тарелки, солнечные коллекторы.
Излучение должно передаваться из одной точки в широкий параллельный луч (например, отражатели фар).
Параллельные радиоволны собираются параболической антенной. Параллельные лучи отражаются от антенны и встречаются в точке F, называемой фокусом.
Часто задаваемые вопросы:
↪ Вершина параболы — это точка на параболе, которая находится на равном удалении от фокуса и директрисы. Ее координаты можно найти по формулам \(x = -b/(2a)\) и \(y = c — (b^2)/(4a)\) .
↪ Направление ветвей параболы зависит от знака коэффициента «a» в уравнении. Если «a» положительный (a > 0), ветви направлены вверх; если «a» отрицательный (a < 0), ветви направлены вниз.
↪ Дискриминант уравнения параболы равен \(D = b^2 — 4ac\) . Значение дискриминанта определяет тип графика параболы: если D > 0, парабола пересекает ось x в двух различных точках и имеет ветви; если D = 0, парабола касается оси x в одной точке и имеет вершину на оси; если D < 0, парабола не пересекает ось x и не имеет вещественных корней.
Больше уроков и заданий по всем школьным предметам в онлайн-школе «Альфа». Запишитесь на пробное занятие прямо сейчас!
Парабола ее виды и уравнения
Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).
Основные понятия
Функция — это зависимость «y» от «x», при которой «x» является переменной или аргументом функции, а «y» — зависимой переменной или значением функции.
Задать функцию означает определить правило в соответствии с которым по значениям независимой переменной можно найти соответствующие ее значения. Вот, какими способами ее можно задать:
- Табличный способ. Помогает быстро определить конкретные значения без дополнительных измерений или вычислений.
- Графический способ: наглядно.
- Аналитический способ, через формулы. Компактно и можно посчитать функцию при произвольном значении аргумента из области определения.
- Словесный способ.
График функции — это объединение всех точек, когда вместо «x» можно подставить в функцию произвольные значения и найти координаты этих точек.
Еще быстрее разобраться в теме и научиться строить график квадратичной функции можно на курсах по математике в онлайн-школе Skysmart.
Построение квадратичной функции
Квадратичная функция задается формулой y = ax 2 + bx + c, где x и y — переменные, a, b, c — заданные числа, обязательное условие — a ≠ 0. В уравнении существует следующее распределение:
- a — старший коэффициент, который отвечает за ширину параболы. Большое значение a — парабола узкая, небольшое — парабола широкая.
- b — второй коэффициент, который отвечает за смещение параболы от центра координат.
- с — свободный член, который соответствует координате пересечения параболы с осью ординат.
График квадратичной функции — парабола, которая имеет следующий вид для y = x 2 :
Точки, обозначенные зелеными кружками называют базовыми точками. Чтобы найти их координаты для функции y = x 2 , нужно составить таблицу:
x
y
Если в уравнении квадратичной функции старший коэффициент равен единице, то график имеет ту же форму, как y = x 2 при любых значениях остальных коэффициентов.
График функции y = –x 2 выглядит, как перевернутая парабола:
Зафиксируем координаты базовых точек в таблице:
x
y
Посмотрев на оба графика можно заметить их симметричность относительно оси ОХ. Отметим важные выводы:
- Если старший коэффициент больше нуля a > 0, то ветви параболы напрaвлены вверх.
- Если старший коэффициент меньше нуля a 2 + bx + c, для построения которой нужно решить квадратное уравнение ax 2 + bx + c = 0. В процессе найдем дискриминант D = b 2 — 4ac, который даст нам информацию о количестве корней квадратного уравнения.
- Если D 0,то график выглядит так:
- Если D = 0, то уравнение имеет одно решение, а парабола пересекает ось ОХ в одной точке. Если a > 0, то график имеет такой вид:
- Если D > 0, то уравнение имеет два решения, а парабола пересекает ось ОХ в двух точках, которые можно найти следующим образом:
Если a > 0, то график выглядит как-то так:
0″ height=»671″ src=»https://lh6.googleusercontent.com/8ryBuyxmK9S2EbnsNc4AE5PEl_NpIg0RAM_Y_V8wUP-zREEHNgi9QoQTl8FXxoujjWRAvf3s-MPRsXsoepaLLSTHDX-ReGtrsnLQp4dW3WaEyPF2ywjVpYFXlDIpAEHoIiwlxiB7″ width=»602″>
На основе вышеизложенного ясно, что зная направление ветвей параболы и знак дискриминанта, у нас есть понимание, как будет выглядеть график конкретной функции.
Координаты вершины параболы также являются важным параметром графика квадратичной функции и находятся следующим способом:
Ось симметрии параболы — прямая, которая проходит через вершину параболы параллельно оси OY.
Чтобы построить график, нам нужна точка пересечения параболы с осью OY. Так как абсцисса каждой точки оси OY равна нулю, чтобы найти точку пересечения параболы y = ax 2 + bx + c с осью OY, нужно в уравнение вместо х подставить ноль: y(0) = c. То есть координаты этой точки будут соответствовать: (0; c).
На изображении отмечены основные параметры графика квадратичной функции:
Алгоритм построения параболы
Рассмотрим несколько способов построения квадратичной параболы. Наиболее удобный способ можно выбрать в соответствии с тем, как задана квадратичная функция.
Уравнение квадратичной функции имеет вид y = ax 2 + bx + c.
Разберем общий алгоритм на примере y = 2x 2 + 3x — 5.
Как строим:
- Определим направление ветвей параболы. Так как а = 2 > 0, ветви параболы направлены вверх.
- Найдем дискриминант квадратного трехчлена 2x 2 + 3x — 5.
D = b 2 — 4ac = 9 — 4 * 2 * (-5) = 49 > 0
В данном случае дискриминант больше нуля, поэтому парабола имеет две точки пересечения с осью ОХ. Чтобы найти их координаты, решим уравнение:
Уравнение квадратичной функции имеет вид y = a * (x — x₀) 2 + y₀
Координаты его вершины: (x₀; y₀). В уравнении квадратичной функции y = 2x 2 + 3x — 5 при а = 1, то второй коэффициент является четным числом.
Рассмотрим пример: y = 2 * (x — 1) 2 + 4.
Как строим:
- Воспользуемся линейным преобразованием графиков функций. Для этого понадобится:
- построить y = x 2 ,
- умножить ординаты всех точек графика на 2,
- сдвинуть его вдоль оси ОХ на 1 единицу вправо,
- сдвинуть его вдоль оси OY на 4 единицы вверх.
- Построить график параболы для каждого случая. 2 + y₀» height=»431″ src=»https://lh5.googleusercontent.com/_zgF-CXWf4Yy0p2OnBYSJkUm0zO-mNetq5feU6LIPEbIgSrO9kdr2ti_tr7Gg3yTMOlJVnuZgG0HleAFfAzG7yr7ELHT6KSMqMrRHkHqt-VcgIiSZx80cVj0zlPMBzEM0wAWQ-L6″ width=»602″>
Уравнение квадратичной функции имеет вид y = (x + a) × (x + b)
Рассмотрим следующий пример: y = (x − 2) × (x + 1).
Как строим:
Данный вид уравнения позволяет быстро найти нули функции:
(x − 2) × (x + 1) = 0, отсюда х₁ = 2, х₂ = −1.
Определим координаты вершины параболы:
Найти точку пересечения с осью OY:
с = ab = (−2) × (1) = −2 и ей симметричная.
Отметим эти точки на координатной плоскости и соединим плавной прямой.
Парабола — свойства, формулы и примеры построения
Основные определения
Параболой называется кривая второго порядка, состоящая из множества точек, которые удалены на равные расстояния от директрисы и вершины. Ее еще называют функцией квадратичного типа. Не следует путать с гиперболой, поскольку она является прямой второго порядка, но ее называют кубической.
Директриса — условная прямая, относительно которой строится кубическая парабола. Она не указывается на чертеже, но полезна при нахождении неизвестных параметров, когда требуется выполнить дополнительное построение.
Вершина (фокус) — ближайшая точка к директрисе. Из нее исходят симметричные ветви кривой, на которой располагаются точки, имеющие одинаковое значение ординат, а их абсциссы равны между собой по модулю и являются противоположными числами.
Полезные свойства
Парабола, как и любое геометрическое тело, обладает определенными свойствами:
- Ветви проходят в зависимости от коэффициента, стоящего перед аргументом старшей степени A: A 0 — вверх.
- Геометрическая фигура, принадлежащая к кривым ll порядка.
- Симметричность.
- Изделия, изготовленные в форме параболы, всегда отражают свет, аккумулируя его в одной точке — вершине.
- Отрезок, соединяющий среднюю точку хорды и точку, где пересекаются прямые-касательные, всегда перпендикулярен директрисе.
- Подобие всех кубических парабол.
Свойства помогают находить некоторые параметры кривой, доказывать утверждения и теоремы. Однако этого недостаточно для решения задач. Следует разобрать математические формы записи параболы.
Формула кривой
Формула параболы — математическая запись, описывающая ее поведение в пространстве. В физико-математических дисциплинах описаны 3 основные формы: каноническая, квадратичная и общая. В первом случае уравнение выглядит у^2=2nх, где у — ордината, х — абсцисса и n — параметр, равный отрезку между директрисой и вершиной кривой.
Следует отметить, что р>0. Чтобы вывести формулу параболы, следует применить алгоритм:
- Записать формулу директрисы. Она параллельна OУ (ординате): х+n/2=0.
- Координаты вершины — (n/2;0).
- Отметить произвольную точку М на одной из ветвей кривой, а затем соединить с вершиной (фокусом — F). В результате получится отрезок FМ.
- Длина FM: FM=[(х-n/2)^2+у^2]^0.5.
- Также FМ записывается при помощи такого тождества: х+n/2.
- Поставить знак равенства между тождествами в четвертом и пятом пунктах: х+n/2=[(х-n/2)^2+у^2]^0.5.
- Возвести обе части во вторую степень, а затем привести подобные коэффициенты: y^2 = 2pn.
Вторая форма математической записи — квадратичная функция. Последняя имеет вид обыкновенного квaдратного трехчлена, т. е. y=Ах^2+Bx+C, где А, В и С — некоторые коэффициенты. Иногда формула рассматривается без дополнительных элементов В и С, т. е. y= ax^2 . В этом случае вершина кривой II порядка находится по формулам:
- Абсцисса: х=-B/2A.
- Ордината: у=-D/2A, где D — значение дискриминанта D=(-B)^2 — 4AC.
Третье представление (уравнение параболы) — общее. Его можно править следующим образом: Ах^2+Вху+Су^2+Dх+Еу+F = 0. Некоторые коэффициенты могут быть эквивалентны нулю. Кроме того, кривая задается также в полярной системе при помощи соотношения n(1+cos(s))=n. В последнем равенстве параметр «n» эквивалентен отрезку, соединяющему директрису и вершину.
Методы нахождения координат вершины
Очень часто функция квадратичного типа при решении задач может быть представлена в некотором виде, который следует при помощи математических преобразований привести в читабельную форму. Последний термин обозначает, что требуется преобразовать формулу параболы для удобного построения таблицы и схематического представления. Делается эта операция по следующему алгоритму на примере z=t^2 +4t+2:
- Приравнять к нулевому значению (квадратное уравнение): t^2 +4t+2=0.
- Выполнить подготовительную операцию по выделению квадрата: t^2 +4t+2+2=0.
- Выделить формулу сокращенного умножения — квадрат: (t+2)^2 -2=0.
- Перенести «-2» вправо, т. е. (t+2)^2=2.
- Найти вершину исходя из решения тождества без «-2».
- Определить ординату z: z=-(2), т. е. число из правой части выражения, умноженное на -1.
- Вычислить координату фокуса (смещение относительно начала координат): (t;z)=(-2;-2).
Методика позволяет найти фокус без дополнительных формул. Однако существует и другой способ определения вершины, где применяется производная функции:
- Определить производную: z’=2t+4.
- Приравнять z’ к нулевому значению: 2t+4=0.
- Найти корень: t=-2.
- Подставить в первоначальную функцию для нахождения ординаты, т. е. z=-2.
- Координата вершины: (-2;-2). Она совпадает со значением в предыдущем примере.
Существуют программные продукты для нахождения параметров параболы. Названия имеют английскую номенклатуру, т. е. «parabola».
График функции
Иногда требуется в заданиях графическое представление функции. Для этого необходимо следовать инструкции:
- Найти вершину любым из способов.
- Рассчитать координаты точек, в которых происходит пересечение с ординатами и абсциссами в прямоугольной системе координат.
- Построить вспомогательную таблицу. Специалисты рекомендуют использовать для схематического построения не менее 4 точек, не считая вершины, а для точного — не менее 10. Кроме того, вершина всегда находится посередине значений таблиц.
- Отметить каждую точку, а затем соединить плавными линиями.
График параболы хорош тем, что позволяет освободиться от большого количества расчетов, поскольку является симметричным. Для таблицы зависимостей достаточно подставить 2 одинаково противоположные величины, а иногда и разные числа превращают значения функции в одинаковые величины.
В первом случае для уравнения z=f^2+1 возможно взять 2 значения аргумента «f» — 1 и -1. При подстановке их в формулу z не изменится, т. е. z1=2 и z2=2. Во втором — 5 и 7 могут давать значение функции, равное 8.
Пример решения
Для практического применения теоретических знаний о параболе рекомендуется решать задачи. Условие одной из них формулируется следующим образом: дана формула функции параболы f=(t+2)^2 -3t^2+8t-5+3(t-1)^2, для которой необходимо подготовить данные, чтобы построить график в схематическом виде (8 значений). Решать ее следует по следующей методике:
- Раскрыть скобки и привести подобные элементы: f=t^+4t-1.
- Приравнять к 0: t^2+4t-1=0.
- Выделить квадрат: (t+2)^2-5.
- Перенос свободного члена: (t+2)^2=5.
- Вершина с координатами: (-2;-5).
- Вычислить нули функции с абсциссами: t^2+4t-1=0. Корни: t1=-2-(5)^0.5 и t2=-2+(5)^0.5. Координаты: (-2-(5)^0.5;0) и (-2+(5)^0.5;0)
- Нули функции (пересечение оси ординат при t=0): (0+2)^2-5=-1. Координата — (0;-1).
- Построение таблицы.
Можно приступать к построению графика. Специалисты рекомендуют чертить его при помощи карандаша. Отмечать следует только точки, указанные в таблице. Кроме того, необходимо указать на графике нули функции, а также ее пересечения с ординатой. Ветви искомой параболы будут направлены вверх, поскольку коэффициент при квадрате 1>0.
Таким образом, парабола — кривая ll порядка, которая используется для описания некоторых физических явлений, траекторий движения тел в пространстве, а также для описания квадратичной зависимости между двумя величинами.
Парабола
Парабола, её форма, фокус и директриса.
Параболой называется линия, которая в некоторой декартовой прямоугольной системе координат определяется каноническим уравнением
$$
y^ =2px\label
$$
при условии \(p > 0\).
Из уравнения \eqref вытекает, что для всех точек параболы \(x \geq 0\). Парабола проходит через начало канонической системы координат. Эта точка называется вершиной параболы.
Форма параболы известна из курса средней школы, где она встречается в качестве графика функции \(y=ax^ \). Отличие уравнений объясняется тем, что в канонической системе координат по сравнению с прежней оси координат поменялись местами, а коэффициенты связаны равенством \(2p=a^ \).
Фокусом параболы называется точка \(F\) с координатами \((p/2, 0)\) в канонической системе координат.
Директрисой параболы называется прямая с уравнением \(x=-p/2\) в канонической системе координат (\(PQ\) на рис. 8.11).
Рис. 8.11. Парабола.
Свойства параболы.
Расстояние от точки \(M(x, y)\), лежащей на параболе, до фокуса равно
$$
r=x+\frac
Вычислим квадрат расстояния от точки \(M(x, y)\) до фокуса по координатам этих точек: \(r^ =(x-p/2)^ +y^ \) и подставим сюда \(y^ \) из канонического уравнения параболы. Мы получаем
$$
r^ =\left(x-\frac
\right)^ .\nonumber
$$
Отсюда в силу \(x \geq 0\) следует равенство \eqref .
Заметим, что расстояние от точки \(M\) до директрисы также равно
$$
d=x+\frac
Следовательно, мы можем сделать следующий вывод.
Для того чтобы точка \(M\) лежала на параболе, необходимо и достаточно, чтобы она была одинаково удалена от фокуса и от директрисы этой параболы.
Докажем достаточность. Пусть точка \(M(x, y)\) одинаково удалена от фокуса и от директрисы параболы:
$$
\sqrt \right)^ +y^ >=x+\frac
Возводя это уравнение в квадрат и приводя в нем подобные члены, мы получаем из него уравнение параболы \eqref . Это заканчивает доказательство.
Параболе приписывается эксцентриситет \(\varepsilon=1\). В силу этого соглашения формула
$$
\frac =\varepsilon\nonumber
$$
верна и для эллипса, и для гиперболы, и для параболы.
Уравнение касательной к параболе.
Выведем уравнение касательной к параболе в точке \(M_ (x_ , y_ )\), лежащей на ней. Пусть \(y_ \neq 0\). Через точку \(M_ \) проходит график функции \(y=f(x)\), целиком лежащий на параболе. (Это \(y=\sqrt \) или же \(y=-\sqrt \), смотря по знаку \(y_ \).) Для функции \(f(x)\) выполнено тождество \((f(x))^ =2px\), дифференцируя которое имеем \(2f(x)f'(x)=2p\). Подставляя \(x=x_ \) и \(f(x_ )=y_ \), находим \(f'(x_ )=p/y_ \) Теперь мы можем написать уравнение касательной к параболе
$$
y-y_ =\frac
>(x-x_ ).\nonumber
$$
Упростим его. Для этого раскроем скобки и вспомним, что \(y_ ^ =2px_ \). Теперь уравнение касательной принимает окончательный вид
$$
yy_ =p(x+x_ ).\label
$$
Заметим, что для вершины параболы, которую мы исключили, положив \(y_ \neq 0\), уравнение \eqref превращается в уравнение \(x=0\), то есть в уравнение касательной в вершине. Поэтому уравнение \eqref справедливо для любой точки на параболе.
Касательная к параболе в точке \(M_ \) есть биссектриса угла, смежного с углом между отрезком, который соединяет \(M_ \) с фокусом, и лучом., выходящим из этой точки в направлении оси параболы (рис. 8.12).
Рассмотрим касательную в точке \(M_ (x_ , y_ )\). Из уравнения \eqref получаем ее направляющий вектор \(\boldsymbol (y_ , p)\). Значит, \((\boldsymbol , \boldsymbol _ )=y_ \) и \(\cos \varphi_ =y_ /\boldsymbol \). Вектор \(\overrightarrow >\) имеет компоненты \(x_ =p/2\) и \(y_ \), а потому
$$
(\overrightarrow >, \boldsymbol )=x_ y_ -\frac
y_ +py_ =y_ (x_ +\frac
).\nonumber
$$
Но \(|\overrightarrow >|=x_ +p/2\). Следовательно, \(\cos \varphi_ =y_ /|\boldsymbol |\). Утверждение доказано.
Заметим, что \(|FN|=|FM_ |\) (см. рис. 8.12).