Что является корнем нелинейного уравнения f x 0
The following steps would be useful to find the maximum and minimum value of a function using first and second derivatives.
Let f(x) be a function. Find the first derivative of f(x), which is f'(x).
Equate the first derivative f'(x) to zero and solve for x, which are called critical numbers.
Find the second derivative of f(x), which is f»(x).
Substitute the critical numbers found in step 2 in the second derivative f»(x).
If f»(x) > 0 for some value of x, say x = b, then the function f(x) is minimum at x = b.
To get maximum and minimum values of the function substitute x = a and x = b in f(x).
Maximum value = f(a)
Minimum value = f(b)
Determine the maximum value of the function :
Find the first derivative of f(x).
Equate the first derivative to zero, that is f'(x) = 0.
Find the second derivative of f(x).
Substitute the critical number x = 2 in f»(x).
So, f(x) is maximum at x = 2.
To find the maximum value, substitute x = 2 in f(x).
Therefore the maximum value of the function f(x) is 7.
We can justify our answer by graphing the function f(x).
The given function is the equation of parabola. Replace f(x) by y.
Write the above equation of parabola in vertex form.
y = -[x 2 — 2(x)(2) + 2 2 — 2 2 — 3]
y = -[(x — 2) 2 — 4 — 3]
The above equation is in the form y = a(x — h) 2 + k.
Vertex (h, k) = (2, 7)
Because ‘a’ is negative the parabola opens down. So, we have only the maximum value for y, that is the y-coordinate at the vertex, which is 7.
The answer is justified.
Determine the maximum and minimum values of the function :
f(x) = 2x 3 + 3x 2 — 36x + 1
Find the first derivative of f(x).
f'(x) = 2(3x 2 ) + 3(2x) — 36(1) + 0
Equate the first derivative to zero, that is f'(x) = 0.
6x 2 + 6x — 36 = 0
Divide both sides by 6.
Factor and solve.
Find the second derivative of f(x).
f'(x) = 6x 2 + 6x — 36
Substitute the critical numbers x = 2 and x = -3 in f»(x).
When x = 2, f»(x) > 0, the function f(x) is minimum at
When x = -3, f»(x) > 0, the function f(x) is maximum at
To find the maximum and minimum values of the given function, substitute x = -3 and x = 2 in f(x).
f(-3) = 2(-3) 3 + 3(-3) 2 — 36(-3) + 1
= 2(-27) + 3(9) + 108 + 1
f(2) = 2(2) 3 + 3(2) 2 — 36(2) + 1
Kindly mail your feedback to v4formath@gmail.com
We always appreciate your feedback.
© All rights reserved. onlinemath4all.com
Absolute maximum – Definition, Conditions, and Examples
Learning about a function’s absolute maximum will help us in sketching the function’s graphs accurately. The absolute maximum is an important component of a function. In fact, this comes in handy when we solve optimization problems: optimizing the profit, finding the highest point, and the largest area covered.
The function’s absolute maximum represents the function’s maximum value within a given interval or throughout its domain. A function can only have one absolute maximum.
Since absolute maximum is an application of first and second derivative tests, make sure that you have your notes handy. You can also check out this article in case you need a refresher.
In this article, we’ll show you what makes an absolute maximum different from a local maximum. We’ll also try out problems that involve the function’s absolute maximum.
What is an absolute maximum?
The absolute maximum (or also known as global maximum) of a function, $f(x)$, represents that highest possible values for $f(x)$.Let’s say we have the function’s critical number, $x =c$, within its domain. The function $f(x)$ is said to have an absolute maximum at $x= c$ if it satisfies the inequality shown below.
When this is true, $\boldsymbol<(c, f(x))>$ is the absolute maximum and the highest possible values for $f(x)$ is $\boldsymbol$.
Here’s a graph showing you the curve’s different extrema. As you can see from the graph, a function can have one or more local minima or extrema. The function, however, will only have one absolute maximum (and minimum).
This function, for example, has a global maximum (or the absolute maximum) at $(-1.5, 1.375)$. This means that the highest value of the function is $1.375$. Let’s say this graph represents the motion of an object. This means that the function reaches the highest point of $1.375$ units.
How to find the absolute maximum?
By inspection, we can find the absolute maximum by looking for the highest point of the function’s curve. We’ll show you three common conditions that you might encounter in your Calculus classes:
- Finding the absolute maximum (also known as the global maximum) through the domain of the function, $(-\infty, \infty)$.
- Finding one global maximum within a closed interval.
- Finding multiple absolute maximum points – this normally occurs in periodic functions such as $y =\cos x$.
For each case, make sure to find the highest point/s of the function. The value of the function there represents its absolute or global maximum.
- The function’s highest point is $(0, 4)$ throughout its domain, $(-\infty, \infty)$. This means that the function’s absolute maximum is $4$.
- Within the interval of $[2, 6]$, the function has a maximum value at $(6, 9)$, so the function has a global maximum of $6$.
- We can see the highest points ay $(-2\pi, 1)$, $(0, 1)$, and $(2\pi, 1)$. This shows that a function may have multiple maximum points, but it will still have one global maximum: $1$.
What if we’re not given the function’s graph? We can still find the function’s global maximum using the Extreme Value Theorem. When $f(x)$ is continuous on the interval, $[a, b]$,$f(x)$ should have absolute maximum within the given interval.
Here are the steps to keep in mind when finding the function’s absolute maximum:
- Make sure that the function is continuous within the interval.
- Find the critical numbers of the function within the interval. Recall that we can find the critical numbers of $f(x)$ by equating $\boldsymbol
(x)>$ tozero. - Evaluate $f(x)$ at the critical numbers and the endpoints. Whichever is the highest value of $\boldsymbol$ represents the function’s global or absolute maximum.
Let’s say we want to find the absolute maximum of $f(x) = x^2$ within the interval, $[-3, 3]$. Since $f(x)$ is continuous within $[-3, 3]$, we can proceed and find its critical numbers. Find $f’(x)$ using the power rule and equating the resulting expression to $0$.
Evaluate $f(x)$ at the critical point and the interval’s endpoints.
The largest value for $f(x)$ occurs when $x = -3$ and $x = 3$, so the absolute maximum of $f(x)$ is $9$.
The graph shows the curve of $f(x)$ within the interval, $[-3, 3]$. We can see from this that the highest point of $f(x)$ is $9$, so this confirms what we currently know: $f(x)$’s global maximum is indeed equal to $9$.
We’ll approach a similar process when finding the absolute maxima of different functions. Try out the problems shown below once you’re ready!
Example 1
Use the graph of $h(x)$ to answer the questions that follow.
i) What is the interval covered by the graph shown above?
ii) What is the global maximum of the function?
iii) If $x = c$ is a critical point of $h’(x)$ and is within the interval of the curve, what can you say about $h(c)$ and $h(3.5)$?
The graph extends from $x=-1$ to $x = 3.5$, so the curve shown covers the interval, $[-1, 3.5]$.
Within the interval, $[-1, 3.5]$, we can see that the maximum value of $h(x)$ is $0.875$, so $h(x)$ has a global maximum of $0.875$.
This means that within the given interval, $h(3.5) = 0.875$ will be the highest point. Hence, $h(3.5)$ will always be greater than any value of $h(c)$ within the interval, $[-1, 3.5]$.
Example 2
Determine the absolute maximum of the function $g(x) = 3x + \dfrac$ over the interval, $[1, 4]$, if it exists.
The function $g(x)$ is continuous within the interval, $[1, 4]$. Let’s find the critical numbers of the function by finding $g^<\prime>(x)$.
Equate $g^<\prime>(x)$ to zero then find the critical numbers of $g(x)$ within the interval, $[1, 4]$.
This means that within the given interval, we have a critical number at $x =1$. Now, let’s check the values of $g(x)$ at $x= 1$ and $x = 4$.
From the results, we can see that $g(x)$ has an absolute maximum of $\dfrac$.
Example 3
Determine the absolute maximum of the function $f(x) = \dfrac$ over the interval, $[0, 5]$, if it exists.
The denominator of $f(x)$ will always be greater than $0$, so $f(x)$ is continuous throughout the interval, $[0, 5]$.Now, differentiate $f(x)$ to begin our process of finding the function’s critical numbers.
Equate $f^<\prime>(x)$ to zero to find the $f(x)$’s critical numbers.
Since $x^2$ will always be positive, the equation has no solution. This means that we can’t find $f(x)$’s critical numbers. Instead, let’s observe the values of $f(x)$ at its interval’s endpoints.
From this, we can see that $f(x)$’s global maximum for the interval $[0, 5]$ is $0$.
Example 4
Martha realized that its company’s weekly profit from the sale of $x$ units of office chairs can be modeled by the function, $P(x) = -0.04x^3 + 300x – 40000$. Their current production power can only manufacture a maximum of $120$ units each week. Their contracts with local shops require them to create at least $40$ units per week. What is the maximum possible profit that Martha’s company can make in a week?
The minimum number of office chairs that Martha’s company can make is $40$ while they can produce a maximum of $120$ units per week. This means that we’re finding the global maximum of $P(x) = -0.04x^3 + 432x – 40000$ within the interval, $[40, 120]$.
Let’s go ahead and find the critical numbers for $P(x)$. Find the values of $x$ that satisfy the equation, $P^<\prime>(x) = 0$.
Equate this expression to $0$ then find the values of $x$.
Disregard the negative root since $x$ represents the number of computer chairs, so $x$ will always be greater than zero. Evaluate $P(x)$ at $x=40$, $x=60$, and $x=140$.
Since $P(x)$ is highest when $x =40$, the maximum profit that Martha’s company can earn is $240$ dollars.
Practice Questions
1. Use the graph of $g(x)$ to answer the questions that follow.
i) What is the interval covered by the graph shown above?
ii) What is the global maximum of the function?
iii) If $x = c$ is a critical point of $g’(x)$ and is within the interval of the curve, what can you say about $g(c)$ and $g(2)$?
2. Determine the absolute maximum of the function $h(x) = 4x + \dfrac$ over the interval, $[2, 6]$, if it exists.
3. Determine the absolute maximum of the function $f(x) = \dfrac$ over the interval, $[1, 6]$, if it exists.
Answer Key
Images/mathematical drawings are created with GeoGebra.
Что является корнем нелинейного уравнения f x 0
где f(x) — заданная алгебраическая или трансцендентная функция.
Решить уравнение — значит найти все его корни, то есть те значения x , которые обращают уравнение в тождество.
Если уравнение достаточно сложно, то задача точного определения корней является в некоторых случаях нерешаемой. Поэтому ставится задача найти такое приближенное значение корня xПP , которое отличается от точного значения корня x* на величину, по модулю не превышающую указанной точности (малой положительной величины) ε , то есть
Величину ε также называют допустимой ошибкой , которую можно задать по своему усмотрению.
Этапы приближенного решения нелинейных уравнений
Приближенное решение уравнения состоит из двух этапов:
- Отделение корней, то есть нахождение интервалов из области определения функции f(x) , в каждом из которых содержится только один корень уравнения f(x)=0 .
- Уточнение корней до заданной точности.
Отделение корней
Отделение корней можно проводить графически и аналитически.
Для того чтобы графически отделить корни уравнения, необходимо построить график функции f(x) . Абсциссы точек его пересечения с осью Ox являются действительными корнями уравнения.
Для примера рассмотрим задачу решения уравнения
где угол x задан в градусах. Указанное уравнение можно переписать в виде
Для графического отсечения корней достаточно построить график функции
Из рисунка видно, что корень уравнения лежит в промежутке x∈(6;8) .
Аналитическое отделение корней
Аналитическое отделение корней основано на следующих теоремах.
Теорема 1 . Если непрерывная функция f(x) принимает на концах отрезка [a; b] значения разных знаков, т.е.
то на этом отрезке содержится по крайней мере один корень уравнения.
Теорема 2 . Если непрерывная на отрезке [a; b] функция f(x) принимает на концах отрезка значения разных знаков, а производная f'(x) сохраняет знак внутри указанного отрезка, то внутри отрезка существует единственный корень уравнения f(x) = 0 .
Уточнение корней
Для уточнения корней может использоваться один из следующих методов:
Метод последовательных приближений (метод итераций)
Метод итерации — численный метод решения математических задач, используемый для приближённого решения алгебраических уравнений и систем. Суть метода заключается в нахождении по приближённому значению величины следующего приближения (являющегося более точным). Метод позволяет получить решение с заданной точностью в виде предела последовательности итераций. Характер сходимости и сам факт сходимости метода зависит от выбора начального приближения решения.
Функциональное уравнение может быть записано в виде
Функцию f(x) называют сжимающим отображением .
Последовательность чисел x0, x1 ,…, xn называется итерационной , если для любого номера n>0 элемент xn выражается через элемент xn-1 по рекуррентной формуле
а в качестве x0 взято любое число из области задания функции f(x) .
Реализация на C++ для рассмотренного выше примера
Уравнение может быть записано в форме
Результат выполнения
Метод Ньютона (метод касательных)
Если известно начальное приближение x0 корня уравнения f(x)=0, то последовательные приближения находят по формуле
Графическая интерпретация метода касательных имеет вид
Реализация на C++
Для заданного уравнения
производная будет иметь вид
Результат выполнения
Метод секущих (метод хорд)
Если x0 , x1 — приближенные значения корня уравнения f(x) = 0 и выполняется условие
то последующие приближения находят по формуле
Методом хорд называют также метод, при котором один из концов отрезка закреплен, т.е. вычисление приближения корня уравнения f(x) = 0 производят по формулам:
Геометрическая интерпретация метода хорд:
Реализация на C++
В отличие от двух рассмотренных выше методов, метод хорд предполагает наличие двух начальных приближений, представляющих собой концы отрезка, внутри которого располагается искомый корень.
Результат выполнения
Метод половинного деления (метод дихотомии)
Если x0 , x1 — приближенные значения корня уравнения f(x) = 0 и выполняется условие
то последующие приближения находятся по формуле
и вычисляется f(xi) . Если f(xi)=0 , то корень найден. В противном случае из отрезков выбирается тот, на концах которого f(x) принимает значения разных знаков, и проделывается аналогичная операция. Процесс продолжается до получения требуемой точности.
Геометрическая интерпретация метода дихотомии
Реализация на C++
Результат выполнения
Для численного поиска решения также можно использовать генетические алгоритмы.
Что является корнем нелинейного уравнения f x 0
Уравнение типа F(x)=0 или x=f(x) называется нелинейным. Решить уравнение это значит найти такое x, при котором уравнение превращается в тождество. В общем случае уравнение может иметь 0; 1; 2;. ∞ корней. Рассмотренные ниже численные методы решения нелинейных уравнений позволяют находить один корень на заданном интервале [a,b]. При этом на интервале должен существовать только один корень. Рассмотрим несколько методов решения нелинейных уравнений.
Рис. Структограмма для метода
Рис. Структограмма для метода половинного деления
Рис. Структограмма для метода хорд
Рис. Структограмма для
Рис. Структограмма для метода итераций
Контрольное задание. Лабораторная работа 4.
Решение нелинейных уравнений.
Задание. Решить нелинейное уравнениеуказанными в табл. методами, предварительно определив интервал [a,b], на котором существует решение уравнения. Сделать проверку решения.
Численное решение нелинейного уравнения. Этапы решения.
f(x)=0, где f(x) – произвольная функция, наиболее распространенная в инж. Практике задача по отысканию корней.
Выбор метода решения зависит от вида f(x). Для численного решения нелинейных уравнений применяются только итерационные методы.
Задача нахождения корней состоит из 2 этапов:
1. Отделение корней – определение числа корней и их примерного расположения на числовой оси.
Наиболее применим графический способ отделения корней, т. е. отыскание точек пересечения ф. f(x) с осью абсцисс:
[a;b] – интервал изоляции корня. Для каждого корня уравнения определяется интервал его изоляции [a;b]. На отрезке [a;b] должен находиться 1 корень.
2. Уточнение корней – вычисление каждого корня с заданной степенью точности.
Классификация методов уточнения корней :
1) Метод половинного деления отрезка(дихотомии).
Отрезок [a;b], содержащий единственный корень, делят пополам, отбрасывают ту половину, где нет корня. Процесс повторяется до тех пор, пока длина отрезка не станет меньше заданной погр. E.
Достоинства: прост и надежен, всегда сводится к решению независимо от вида ф. f(x). Недостаток: самый медленный из всех известных методов уточн. Корня.
Построение последовательных хорд, в качестве приближений к корню принимаются значения их пересечения с осью абсцисс.
Достоинство: простота. Недостаток: быстрота сходимости к решению сильно зависит от вида ф. f(x).
3) Метод касательных( метод Ньютона)
В качестве приближения к корню ищется точка пересечения касательной с осью абсцисс.
Достоинство: высокая скорость. Недостатки: ограничения на вид ф. (должна быть дифференцируема, f’(x) и f’’(x) не должны менять знак на интервале уточнения корня).
4) Комбинированный метод – объединение методов хорд и касательных.
Приближение к корню на каждой итерации происходит одновременно с 2 сторон интервала [a;b]. Одной стороны строится хорда, а с другой касательная.
Достоинство: работает быстрее, чем методы хорд и касательных. Недостатки: f(x) должна быть дифференцируема; f’(x) иf’’(x) не должны менять знак на интервале уточнения корня; трудности с дифф-ем f(x).
5) Метод простой итерации.
Исходное нелинейное уравнения заменяется равносильным уравнением x=g(x)и с помощью сходящегося итерационного процесса происходит приближение к корню, пока не достигнет предела заданной погрешности Е.
45)Уточнение корня нелинейного уравнения методом половинного деления(дихотомии). Алгоритм. Требуется вычислить корень уравнения f(x)=0 на [a;b] с заданной погрешностью Е. Отрезок [a;b], содержащий единственный корень, делят на 2 половины, отбрасывают ту из них, где нет корня. Процесс продолжается до тех пор, пока длина отрезка не станет меньше заданной погрешности Е. Алгоритм метода: |
46)Уточнение корня нелинейного уравнения методом хорд. Схема алгоритма.Требуется вычислить корень уравнения f(x)=0 на [a,b] с заданной погрешностью е. Геометр-ки метод основан на построении последовательности хорд. Ур-е хорды . В данном методе процесс итерации состоит в том, что в качестве приближений к корню уравнение f(x)=0 принимаются значения х1, х2… хi точек пересечения хорды АВ с осью абсцисс. Если f(a)>0 , то левая граница a неподвижна, х0=b и из урав. хорды получим: Если f(a)0=a. .
47) Уточнение корня нелинейного уравнения методом касательных. Схема алгоритма.
Отличие от м.хорд – вместо хорды на каждом шаге проводится касательная к кривой y=f(x) и в качестве приближения к корню ищется точка пересечения касательной с осью абсцисс. Уравн-е касательной проведенной в т. х0 : . Правило: В качестве исходной точки х0 выбирается тот конец интервала [a,b] , где знак ф-и совпадает со знаком 2й производной f’’(x). Из уравнения касательной найдем след.приближение корня х1 , как абсциссу точки пересечения касательной с осью ох : . Аналогично м. б. найдены и последующие приближенно. Ф-ла для i+1 приближения имеет вид : Для окончания можно использовать условия |f(xi)|i+1-xi|
48) Уточнение корня нелинейного уравнения комбинированным методом. Схема алгоритма.Геометрически такое объединение сводится к тому, что приближение к истинному значению корня уравнения f(x)=0 на каждой итерации происходит одновременно с 2х сторон интервала [a,b]. При это, для приближения к корню с одной стороны строится хорда, а с др.- касательная. Пусть для определенности f’(x)>0 и f’’(x)>0 при a≤x≤b. Тогда для приближения к корню со стороны границы а используем построение хорды, а со стороны границы b – касательная. На 1й итерации строим хорду А0В0 и проводим касательную в точку В0. Левую границу а переносим в а1, правую – b1. На каждой итерации для вычисления новых границ интервала используют ф-лы хорд и касательных : , . Сужение интервала проводим до тех пор пока он не станет < зад.погрешности |bi+1-ai+1|
Последнее изменение этой страницы: 2017-03-14; Просмотров: 1365; Нарушение авторского права страницы
Нахождение корней нелинейного уравнения методом ньютона
Инструкция . Введите выражение F(x) , нажмите Далее . Полученное решение сохраняется в файле Word . Также создается шаблон решения в Excel .
- Решение онлайн
- Видеоинструкция
- Оформление Word
Правила ввода функции, заданной в явном виде
- Примеры правильного написания F(x) :
- 10•x•e 2x = 10*x*exp(2*x)
- x•e -x +cos(3x) = x*exp(-x)+cos(3*x)
- x 3 -x 2 +3 = x^3-x^2+3
- Выражение 0.9*x=sin(x)+1 необходимо преобразовать к виду: sin(x)+1-0.9*x . Аналогично, x^2-7=5-3x к виду x^2+3x-12 .
Пусть дано уравнение f(x)=0 , где f(x) определено и непрерывно в некотором конечном или бесконечном интервале a ≤ x ≤ b . Всякое значение ξ, обращающее функцию f(x) в нуль, то есть такое, что f(ξ)=0 называется корнем уравнения или нулем функции f(x) . Число ξ называется корнем k -ой кратности, если при x = ξ вместе с функцией f(x) обращаются в нуль ее производные до (k-1) порядка включительно: f(ξ)=f’(ξ)= … =f k-1 (ξ) = 0 . Однократный корень называется простым.
Приближенное нахождение корней уравнения складывается из двух этапов:- Отделение корней, то есть установление интервалов [αi,βi] , в которых содержится один корень уравнения.
- f(a)•f(b) , т.е. значения функции на его концах имеют противоположные знаки.
- f’(x) сохраняет постоянный знак, т.е. функция монотонна (эти два условия достаточны, но НЕ необходимы) для единственности корня на искомом отрезке).
- f”(x) сохраняет постоянный знак, т.е. функция выпукла вверх, либо – вниз.
Геометрическая интерпретация метода Ньютона (метод касательных)
Критерий завершения итерационного процесса имеет вид
Численные методы: решение нелинейных уравнений
Задачи решения уравнений постоянно возникают на практике, например, в экономике, развивая бизнес, вы хотите узнать, когда прибыль достигнет определенного значения, в медицине при исследовании действия лекарственных препаратов, важно знать, когда концентрация вещества достигнет заданного уровня и т.д.
В задачах оптимизации часто необходимо определять точки, в которых производная функции обращается в 0, что является необходимым условием локального экстремума.
В статистике при построении оценок методом наименьших квадратов или методом максимального правдоподобия также приходится решать нелинейные уравнения и системы уравнений.
Итак, возникает целый класс задач, связанных с нахождением решений нелинейных уравнений, например, уравнения или уравнения и т.д.
В простейшем случае у нас имеется функция , заданная на отрезке ( a , b ) и принимающая определенные значения.
Каждому значению x из этого отрезка мы можем сопоставить число , это и есть функциональная зависимость, ключевое понятие математики.
Нам нужно найти такое значение при котором такие называются корнями функции
Визуально нам нужно определить точку пересечения графика функции с осью абсцисс.
Метод деления пополам
Простейшим методом нахождения корней уравнения является метод деления пополам или дихотомия.
Этот метод является интуитивно ясным и каждый действовал бы при решении задачи подобным образом.
Алгоритм состоит в следующем.
Предположим, мы нашли две точки и , такие что и имеют разные знаки, тогда между этими точками находится хотя бы один корень функции .
Поделим отрезок пополам и введем среднюю точку .
Тогда либо , либо .
Оставим ту половину отрезка, для которой значения на концах имеют разные знаки. Теперь этот отрезок снова делим пополам и оставляем ту его часть, на границах которой функция имеет разные знаки, и так далее, достижения требуемой точности.
Очевидно, постепенно мы сузим область, где находится корень функции, а, следовательно, с определенной степенью точности определим его.
Заметьте, описанный алгоритм применим для любой непрерывной функции.
К достоинствам метода деления пополам следует отнести его высокую надежность и простоту.
Недостатком метода является тот факт, что прежде чем начать его применение, необходимо найти две точки, значения функции в которых имеют разные знаки. Очевидно, что метод неприменим для корней четной кратности и также не может быть обобщен на случай комплексных корней и на системы уравнений.
Порядок сходимости метода линейный, на каждом шаге точность возрастает вдвое, чем больше сделано итераций, тем точнее определен корень.
Метод Ньютона: теоретические основы
Классический метод Ньютона или касательных заключается в том, что если — некоторое приближение к корню уравнения , то следующее приближение определяется как корень касательной к функции , проведенной в точке .
Уравнение касательной к функции в точке имеет вид:
В уравнении касательной положим и .
Тогда алгоритм последовательных вычислений в методе Ньютона состоит в следующем:
Сходимость метода касательных квадратичная, порядок сходимости равен 2.
Таким образом, сходимость метода касательных Ньютона очень быстрая.
Запомните этот замечательный факт!
Без всяких изменений метод обобщается на комплексный случай.
Если корень является корнем второй кратности и выше, то порядок сходимости падает и становится линейным.
Упражнение 1. Найти с помощью метода касательных решение уравнения на отрезке (0, 2).
Упражнение 2. Найти с помощью метода касательных решение уравнения на отрезке (1, 3).
К недостаткам метода Ньютона следует отнести его локальность, поскольку он гарантированно сходится при произвольном стартовом приближении только, если везде выполнено условие , в противной ситуации сходимость есть лишь в некоторой окрестности корня.
Недостатком метода Ньютона является необходимость вычисления производных на каждом шаге.
Визуализация метода Ньютона
Метод Ньютона (метод касательных) применяется в том случае, если уравнение f(x) = 0 имеет корень , и выполняются условия:
1) функция y= f(x) определена и непрерывна при ;
2) f(a)·f(b) 0. Таким образом, выбирается точка с абсциссой x0, в которой касательная к кривой y=f(x) на отрезке [a;b] пересекает ось Ox. За точку x0 сначала удобно выбирать один из концов отрезка.
Рассмотрим метод Ньютона на конкретном примере.
Пусть нам дана возрастающая функция y = f(x) =x 2 -2, непрерывная на отрезке (0;2), и имеющая f ‘(x) = 2x > 0 и f »(x) = 2 > 0.
Уравнение касательной в общем виде имеет представление:
В нашем случае: y-y0=2x0·(x-x0). В качестве точки x0 выбираем точку B1(b; f(b)) = (2,2). Проводим касательную к функции y = f(x) в точке B1, и обозначаем точку пересечения касательной и оси Ox точкой x1. Получаем уравнение первой касательной:y-2=2·2(x-2), y=4x-6.
Точка пересечения касательной и оси Ox: x1 =
Рисунок 2. Результат первой итерации
Затем находим точку пересечения функции y=f(x) и перпендикуляра, проведенного к оси Ox через точку x1, получаем точку В2 =(1.5; 0.25). Снова проводим касательную к функции y = f(x) в точке В2, и обозначаем точку пересечения касательной и оси Ox точкой x2.
Точка пересечения касательной и оси Ox: x2 = .
Рисунок 3. Вторая итерация метода Ньютона
Затем находим точку пересечения функции y=f(x) и перпендикуляра, проведенного к оси Ox через точку x2, получаем точку В3 и так далее.
Рисунок 4. Третий шаг метода касательных
Первое приближение корня определяется по формуле:
Второе приближение корня определяется по формуле:
Третье приближение корня определяется по формуле:
Таким образом, i-ое приближение корня определяется по формуле:
Вычисления ведутся до тех пор, пока не будет достигнуто совпадение десятичных знаков, которые необходимы в ответе, или заданной точности e — до выполнения неравенства |xi—xi-1|
using namespace std;
float f(double x) //возвращает значение функции f(x) = x^2-2
float df(float x) //возвращает значение производной
float d2f(float x) // значение второй производной
int _tmain(int argc, _TCHAR* argv[])
int exit = 0, i=0;//переменные для выхода и цикла
double x0,xn;// вычисляемые приближения для корня
double a, b, eps;// границы отрезка и необходимая точность
cin>>a>>b; // вводим границы отрезка, на котором будем искать корень
cin>>eps; // вводим нужную точность вычислений
if (a > b) // если пользователь перепутал границы отрезка, меняем их местами
if (f(a)*f(b)>0) // если знаки функции на краях отрезка одинаковые, то здесь нет корня
cout 0) x0 = a; // для выбора начальной точки проверяем f(x0)*d2f(x0)>0 ?
xn = x0-f(x0)/df(x0); // считаем первое приближение
cout eps) // пока не достигнем необходимой точности, будет продолжать вычислять
xn = x0-f(x0)/df(x0); // непосредственно формула Ньютона
> while (exit!=1); // пока пользователь не ввел exit = 1
Посмотрим, как это работает. Нажмем на зеленый треугольник в верхнем левом углу экрана, или же клавишу F5.
Если происходит ошибка компиляции «Ошибка error LNK1123: сбой при преобразовании в COFF: файл недопустим или поврежден», то это лечится либо установкой первого Service pack 1, либо в настройках проекта Свойства -> Компоновщик отключаем инкрементную компоновку.
Рис. 4. Решение ошибки компиляции проекта
Мы будем искать корни у функции f(x) = x2-2.
Сначала проверим работу приложения на «неправильных» входных данных. На отрезке [3; 5] нет корней, наша программа должна выдать сообщение об ошибке.
У нас появилось окно приложения:
Рис. 5. Ввод входных данных
Введем границы отрезка 3 и 5, и точность 0.05. Программа, как и надо, выдала сообщение об ошибке, что на данном отрезке корней нет.
Рис. 6. Ошибка «На этом отрезке корней нет!»
Выходить мы пока не собираемся, так что на сообщение «Exit?» вводим «0».
Теперь проверим работу приложения на корректных входных данных. Введем отрезок [0; 2] и точность 0.0001.
Рис. 7. Вычисление корня с необходимой точностью
Как мы видим, необходимая точность была достигнута уже на 4-ой итерации.
Чтобы выйти из приложения, введем «Exit?» => 1.
Метод секущих
Чтобы избежать вычисления производной, метод Ньютона можно упростить, заменив производную на приближенное значение, вычисленное по двум предыдущим точкам:
Итерационный процесс имеет вид:
Это двухшаговый итерационный процесс, поскольку использует для нахождения последующего приближения два предыдущих.
Порядок сходимости метода секущих ниже, чем у метода касательных и равен в случае однократного корня .
Эта замечательная величина называется золотым сечением:
Убедимся в этом, считая для удобства, что .
Таким образом, с точностью до бесконечно малых более высокого порядка
Отбрасывая остаточный член, получаем рекуррентное соотношение, решение которого естественно искать в виде .
После подстановки имеем: и
Для сходимости необходимо, чтобы было положительным, поэтому .
Поскольку знание производной не требуется, то при том же объёме вычислений в методе секущих (несмотря на меньший порядок сходимости) можно добиться большей точности, чем в методе касательных.
Отметим, что вблизи корня приходится делить на малое число, и это приводит к потере точности (особенно в случае кратных корней), поэтому, выбрав относительно малое , выполняют вычисления до выполнения и продолжают их пока модуль разности соседних приближений убывает.
Как только начнется рост, вычисления прекращают и последнюю итерацию не используют.
Такая процедура определения момента окончания итераций называется приемом Гарвика.
Метод парабол
Рассмотрим трехшаговый метод, в котором приближение определяется по трем предыдущим точкам , и .
Для этого заменим, аналогично методу секущих, функцию интерполяционной параболой проходящей через точки , и .
В форме Ньютона она имеет вид:
Точка определяется как тот из корней этого полинома, который ближе по модулю к точке .
Порядок сходимости метода парабол выше, чем у метода секущих, но ниже, чем у метода Ньютона.
Важным отличием от ранее рассмотренных методов, является то обстоятельство, что даже если вещественна при вещественных и стартовые приближения выбраны вещественными, метод парабол может привести к комплексному корню исходной задачи.
Этот метод очень удобен для поиска корней многочленов высокой степени.
Метод простых итераций
Задачу нахождения решений уравнений можно формулировать как задачу нахождения корней: , или как задачу нахождения неподвижной точки.
Пусть и — сжатие: (в частности, тот факт, что — сжатие, как легко видеть, означает, что).
По теореме Банаха существует и единственна неподвижная точка
Она может быть найдена как предел простой итерационной процедуры
где начальное приближение — произвольная точка промежутка .
Если функция дифференцируема, то удобным критерием сжатия является число . Действительно, по теореме Лагранжа
Таким образом, если производная меньше единицы, то является сжатием.
Условие существенно, ибо если, например, на [0,1] , то неподвижная точка отсутствует, хотя производная равна нулю. Скорость сходимости зависит от величины . Чем меньше , тем быстрее сходимость.
Если в качестве взять функцию , то соответствующая итерационная процедура будет иметь вид: . Как нетрудно убедиться, метод итераций в данном случае расходится при любой начальной точке , не совпадающей с собственно неподвижной точкой .
Однако можно в качестве можно взять, например, функцию . Соответствующая итерационная процедура имеет вид: .
Эти итерации сходятся к неподвижной точке для любого начального приближения :
Действительно, в первом случае , т.е. для выполнения условия необходимо чтобы , но тогда . Таким образом, отображение сжатием не является.
Рассмотрим , неподвижная точка та же самая, ситуация другая. Здесь, хотя формально производная может быть довольно большой (при малых ж), однако уже на следующем шаге она будет меньше 1.
т.е. такой итерационный процесс всегда сходится.
Метод Ньютона представляет собой частный случай метода простых итераций.
Здесь нетрудно убедиться, что при существует окрестность корня, в которой .
то если корень кратности , то в его окрестности и, следовательно,.
Если — простой корень, то сходимость метода касательных квадратичная (то есть порядок сходимости равен 2).
Таким образом, сходимость метода Ньютона очень быстрая.
Нахождение всех корней уравнения
Недостатком почти всех итерационных методов нахождения корней является то, что они при однократном применении позволяют найти лишь один корень функции, к тому же, мы не знаем какой именно.
Чтобы найти другие корни, можно было бы брать новые стартовые точки и применять метод вновь, но нет гарантии, что при этом итерации сойдутся к новому корню, а не к уже найденному, если вообще сойдутся.
Для поиска других корней используется метод удаления корней.
Пусть — корень функции , рассмотрим функцию. Точка будет являться корнем функции на единицу меньшей кратности, чем, при этом все остальные корни у функций и совпадают с учетом кратности.
Применяя тот или иной метод нахождения корней к функции , мы найдем новый корень (который может в случае кратных корней и совпадать с ). Далее можно рассмотреть функцию и искать корни у неё.
Повторяя указанную процедуру, можно найти все корни с учетом кратности.
Заметим, что когда мы производим деление на тот или иной корень , то в действительности мы делим лишь на найденное приближение , и, тем самым, несколько сдвигаем корни вспомогательной функции относительно истинных корней функции . Это может привести к значительным погрешностям, если процедура отделения применялась уже достаточное число раз.
Чтобы избежать этого, с помощью вспомогательных функций вычисляются лишь первые итерации, а окончательные проводятся по исходной функции , используя в качестве стартового приближения, последнюю итерацию, полученную по вспомогательной функции.
Мы рассмотрели решение уравнений только в одномерном случае, нахождение решений многомерных уравнений существенно более трудная задача.
Численные методы решения нелинейных уравнений. Метод Ньютона для решения уравнений с одной переменной
Численные методы решения нелинейных уравнений. Метод Ньютона для решения уравнений с одной переменной
Метод Ньютона (также известный как метод касательных) — это итерационный численный метод нахождения корня (нуля) заданной функции. Метод был впервые предложен английским физиком, математиком и астрономом Исааком Ньютоном (1643-1727), под именем которого и обрёл свою известность.
Метод был описан Исааком Ньютоном в рукописи De analysi per aequationes numero terminorum infinitas ( лат .О б анализе уравнениями бесконечных рядов), адресованной в 1669 году Барроу , и в работе De metodis fluxionum et serierum infinitarum ( лат.Метод флюксий и бесконечные ряды) или Geometria analytica ( лат.Аналитическая геометрия) в собраниях трудов Ньютона, которая была написана в 1671 году. Однако описание метода существенно отличалось от его нынешнего изложения: Ньютон применял свой метод исключительно к полиномам. Он вычислял не последовательные приближения xn , а последовательность полиномов и в результате получал приближённое решение x.
Впервые метод был опубликован в трактате Алгебра Джона Валлиса в 1685 году, по просьбе которого он был кратко описан самим Ньютоном. В 1690 году Джозеф Рафсон опубликовал упрощённое описание в работе Analysis aequationum universalis (лат. Общий анализ уравнений). Рафсон рассматривал метод Ньютона как чисто алгебраический и ограничил его применение полиномами, однако при этом он описал метод на основе последовательных приближений xn вместо более трудной для понимания последовательности полиномов, использованной Ньютоном.
Наконец, в 1740 году метод Ньютона был описан Томасом Симпсоном как итеративный метод первого порядка решения нелинейных уравнений с использованием производной в том виде, в котором он излагается здесь. В той же публикации Симпсон обобщил метод на случай системы из двух уравнений и отметил, что метод Ньютона также может быть применён для решения задач оптимизации путём нахождения нуля производной или градиента.
В соответствии с данным методом задача поиска корня функции сводится к задаче поиска точки пересечения с осью абсцисс касательной, построенной к графику функции .
Рис.1 . График изменение функции
Проведенная в любой точке касательная линия к графику функции определяется производной данной функции в рассматриваемой точке, которая в свою очередь определяется тангенсом угла α ( ). Точка пересечения касательной с осью абсцисс определяется исходя из следующего соотношения в прямоугольном треугольнике: тангенс угла в прямоугольном треугольнике определяется отношением противолежащего катета к прилежащему катету треугольнику. Таким образом, на каждом шаге строится касательная к графику функции в точке очередного приближения . Точка пересечения касательной с осью Ox будет являться следующей точкой приближения . В соответствии с рассматриваемым методом расчет приближенного значения корня на i -итерации производится по формуле:
Наклон прямой подстраивается на каждом шаге наилучшим образом, однако следует обратить внимание на то, что алгоритм не учитывает кривизну графика и следовательно в процессе расчета остается неизвестно в какую сторону может отклониться график.
Условием окончания итерационного процесса является выполнение следующего условия:
где ˗ допустимая погрешность определения корня.
Метод обладает квадратичной сходимостью. Квадратичная скорость сходимость означает, что число верных знаков в приближённом значении удваивается с каждой итерацией.
Математическое обоснование
Пусть дана вещественная функция , которая определена и непрерывна на рассматриваемом участке. Необходимо найти вещественный корень рассматриваемой функции.
Вывод уравнения основано на методе простых итераций, в соответствии с которым уравнение приводят к эквивалентному уравнению при любой функции . Введем понятие сжимающего отображения, которое определяется соотношением .
Для наилучшей сходимости метода в точке очередного приближения должно выполняться условие . Данное требование означает, что корень функции должен соответствовать экстремуму функции .
Производная сжимающего отображения определяется в следующем виде:
Выразим из данного выражение переменную при условии принятого ранее утверждения о том, что при необходимо обеспечить условие . В результате получим выражение для определения переменной :
С учетом этого сжимающая функция прием следующий вид:
Таким образом, алгоритм нахождения численного решения уравнения сводится к итерационной процедуре вычисления:
Алгоритм нахождения корня нелинейного уравнения по методу Ньютона для уравнения с одной переменной
1. Задать начальную точку приближенного значения корня функции , а также погрешность расчета (малое положительное число ) и начальный шаг итерации ( ).
2. Выполнить расчет приближенного значения корня функции в соответствии с формулой:
3. Проверяем приближенное значение корня на предмет заданной точности, в случае:
— если разность двух последовательных приближений станет меньше заданной точности , то итерационный процесс заканчивается.
— если разность двух последовательных приближений не достигает необходимой точности , то необходимо продолжить итерационный процесс и перейти к п.2 рассматриваемого алгоритма.
Пример решения уравнений
по методу Ньютона для уравнения с одной переменной
В качестве примера, рассмотрим решение нелинейного уравнения методом Ньютона для уравнения с одной переменной . Корень необходимо найти с точностью в качестве первого приближения .
Вариант решения нелинейного уравнения в программном комплексе MathCAD представлен на рисунке 3.
Результаты расчетов, а именно динамика изменения приближенного значения корня, а также погрешности расчета от шага итерации представлены в графической форме (см. рис.2).
Рис.2 . Результаты расчета по методу Ньютона для уравнения с одной переменной
Для обеспечения заданной точности при поиске приближенного значения корня уравнения в диапазоне необходимо выполнить 4 итерации. На последнем шаге итерации приближенное значение корня нелинейного уравнения будет определяться значением: .
Рис.3 . Листинг программы в MathCad
Модификации метода Ньютона для уравнения с одной переменной
Существует несколько модификаций метода Ньютона, которые направлены на упрощение вычислительного процесса.
Упрощенный метод Ньютона
В соответствии с методом Ньютона требуется вычислять производную функции f(x) на каждом шаге итерации, что ведет к увеличению вычислительных затрат. Для уменьшения затрат, связанных с вычислением производной на каждом шаге расчета, можно произвести замену производной f’( xn ) в точке xn в формуле на производную f’(x0) в точке x0. В соответствии с данным методом расчета приближенное значение корня определяется по следующей формуле:
Таким образом, на каждом шаге расчета строятся прямые , которые параллельны касательной к кривой y=f(x) в точке B0 (см. рис.4). Преимуществом данного метода является то, что производная функции вычисляется один раз.
Разностный метод Ньютона
В соответствии с методом Ньютона требуется вычислять производную функции f(x) на каждом шаге итерации, что не всегда удобно, а иногда практически невозможно. Данный способ позволяет производную функции заменить разностным отношением (приближенным значением):
В результате приближенное значение корня функции f(x) будет определяться выражением разностного метода Ньютона:
Двух шаговый метод Ньютона
В соответствии с методом Ньютона требуется вычислять производную функции f(x) на каждом шаге итерации, что не всегда удобно, а иногда практически невозможно. Данный способ позволяет производную функции заменить разностным отношением (приближенным значением):
В результате приближенное значение корня функции f(x) будет определяться следующим выражением:
Метод секущих является двух шаговым, то есть новое приближение определяется двумя предыдущими итерациями и . В методе необходимо задавать два начальных приближения и . Скорость сходимости метода будет линейной.
Для того, чтобы добавить Ваш комментарий к статье, пожалуйста, зарегистрируйтесь на сайте.